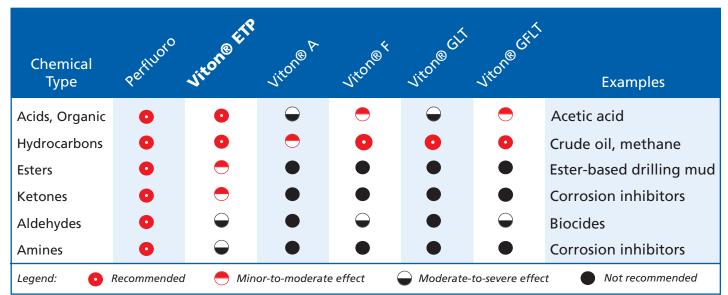


Parco 9166-75 Fluorocarbon Seals

Need a Less Expensive Alternative to Perfluoroelastomers?

Regular fluorocarbon seals don't adequately resist harsh chemicals, but perfluoroelastomers are expensive. Now, Parco's 9166-75 fluorocarbon seals offer a less expensive alternative made from Dupont's polymer, Viton® Extreme[™] (ETP).

Seals used in oil field, automotive, and aerospace applications are regularly exposed to chemicals that can cause them to extrude from their gland. Parco's 9166-75 seals provide excellent resistance to acids, hydrocarbons, esters, keystones, and other caustic fluids. Parco's 9166-75 seals have these features:


• Superior chemical resistance

Our 9166-75 seals swell significantly less in various fluids than seals made form DuPont polymers, Viton[®] A, F, GLT, and GFLT (see Figure 1).

• Exceptional value

Our 9166-75 seals offer reliable service similar to a perfluoroelastomer in aggressive chemicals, but at a fraction of the cost.

Fig. 1:

9166-75 Viton® ETP Seals Offer Similar Chemical Resistance to Perfluoroelastomers

Viton® is a trade name of DuPont Performance Elastomers.

Key Features

Parco's 9166-75 fluorocarbon seals are ideal for use in broad chemical resistance applications. Key features include the following:

• Superior chemical resistance:

Parco 9166-75 seals showed superior chemical resistrance to seals made from DuPont polymers, Viton® A, F, GLT, and GFLT.

Color:

Parco 9166-75 seals are blue.

Exceptional value:

Parco 9166-75 seals are available at a fraction of the cost of perfluoroelastomers.

 Wide range of service temperatures: Parco 9166-75 seals are suitable for applications ranging from -20 to +400°F.

Chemical Resistance	
USE WITH	DO NOT USE WITH
Carbon Tetrachloride	Acetone
Diester Synthetic Lubricants	Amines
Gasoline	Ethyl Acetate
Hot Air	
Toluene	

Typical Values for Compound 9166-75 75-durometer Fluorocarbon-Viton[®] Extreme[™] (ETP)

Section of Spec.	Physical Property	Requirement ¹	Typical Value	ASTM ² Test Method
Z1	Original Properties Hardness, Shore A Tensile strength, MPa (psi), min. Ultimate elongation, pct., min.	75 ± 5 10(1450) 175	71 14.3(2072) 300	D2240 D412 D412
Basic	Fluid Aging, IRM ³ 903 Oil 70 hours at 150°C (302°F) Volume change, pct., max.	10	3	D471
A1-10	Heat Aging 70 hours at 250°C (482°F) Hardness change, pts., Shore A, max. Tensile strength change, pct., max. Ultimate elongation change, pct., max.	10 -25 -25	0 2 17	D573
B37 B38	Compression Set, Plied pct. of original deflection, max. 22 hours at 175°C (347°F) 22 hours at 200°C (392°F)	50 50	29 30	D395 Method B
EO78	Fluid Aging, Service Liquid No. 101 70 hours at 200°C (392°F) Hardness change, pts., Shore A Tensile strength change, pct., max. Ultimate elongation change, pct., max. Volume Change, pct.	-15 to 5 -40 -20 0 to 15	-4 17 17 5	D471
Z2	Low Temperature Property TR-10, °C (°F)	Report	-7(19)	D1329

¹Compound 9166-75 meets the requirements shown above for ASTM D2000 M2HK710 A1-10 B37 B38 EO78 Z1 Z2. ²ASTM is the acronym for the American Society for Testing and Materials. ³IRM is the acronym for Industry Reference Material. Source: Parco Test Report 7992.

This brochure is intended as a guideline and reference. Appropriate testing and validation by users having technical expertise is necessary for proper use of Parco products.

Parco

Parco, Inc., 1801 S. Archibald Ave., Ontario, California 91761 909-947-2200 Fax 909-923-0288 parcoinc.com